Physik

Allgemeine Bildungsziele

Physik erforscht mit experimentellen und theoretischen Methoden die messend erfassbaren und mathematisch beschreibbaren Erscheinungen und Vorgänge in der Natur. Der gymnasiale Physikunterricht macht diese Art der Auseinandersetzung des menschlichen Denkens mit der Natur sichtbar und fördert zusammen mit den anderen Naturwissenschaften das Verständnis für die Natur, den Respekt vor ihr und die Freude an ihr.

Die Schülerinnen und Schüler lernen grundlegende physikalische Gebiete und Phänomene in angemessener Breite kennen. Sie werden befähigt, Zustände und Prozesse in Natur und Technik zu beobachten, sprachlich klar und folgerichtig in eigenen Worten zu beschreiben und quantitativ zu erfassen. Sie vermögen physikalische Zusammenhänge auch im Alltag zu erkennen und sind sich der wechselseitigen Beziehungen von naturwissenschaftlichtechnischer Entwicklung, Gesellschaft und Umwelt bewusst.

Der Physikunterricht vermittelt exemplarisch Einblick in frühere und moderne Denkmethoden und deren Grenzen. Er zeigt einerseits, dass Physik nur einen Teil der Wirklichkeit beschreibt und einer Einbettung in die anderen, dem Menschen zugänglichen Betrachtungsweisen bedarf, weist aber andererseits physikalisches Denken als wesentlichen Bestandteil unserer Kultur aus.

Der Physikunterricht zeigt, dass sich physikalisches Verstehen dauernd entwickelt und von weltanschaulicher Bedeutung ist. Dank fundierter Einsicht in die Möglichkeiten und Grenzen der Naturwissenschaften und durch die Auseinandersetzung mit dem Sinn des Machbaren und der Verantwortung können blinder Wissenschaftsgläubigkeit und Wissenschaftsfeindlichkeit begegnet werden.

Richtziele

Grundkenntnisse

Maturandinnen und Maturanden

- kennen physikalische Grunderscheinungen und wichtige technische Anwendungen, sie verfügen über die zu ihrer Beschreibung notwendigen Begriffe
- kennen physikalische Arbeitsweisen (Beobachtung, Beschreibung, Experiment, Hypothese, Modell, Gesetz, Theorie)
- verstehen einfache technische Anwendungen
- wissen, dass Physik sich wandelt und auf welche Weise diese Wissenschaft vergangene und gegenwärtige Weltbilder mitgeprägt hat und mitprägt

Grundfertigkeiten

Maturandinnen und Maturanden

- beobachten Naturabläufe und technische Vorgänge und beschreiben sie mit eigenen Worten, formulieren physikalische Zusammenhänge sowohl umgangssprachlich als auch mathematisch
- unterscheiden zwischen Fakten und Hypothesen, Beobachtung und Interpretation, Voraussetzung und Folgerung, Abhängigkeiten und Analogien, und erkennen Bekanntes im Neuen
- reduzieren einen Sachverhalt auf die wesentlichen Grössen
- wenden Modelle auf konkrete Situationen an
- können mit zeitgemäßen Medien umgehen, insbesondere verstehen sie die Mittel unserer modernen Informationsgesellschaft sinnvoll zu nutzen
- arbeiten selbständig und im Team

Grundhaltungen

Maturandinnen und Maturanden

- bringen Neugierde. Interesse und Verständnis für Natur und Technik auf
- suchen Verbindungen zu anderen Wissensgebieten und bringen entsprechende Kenntnisse ein
- handeln eigenverantwortlich und eignen sich das dazu nötige Wissen an
- vernetzen naturwissenschaftliche Erkenntnisse mit Wirtschaft und Gesellschaft
- arbeiten an physikalischen Problemstellungen genau und systematisch

Grundlagenfach Physik

	1. Klasse	2. Klasse	3. Klasse	4. Klasse
GF (70'-Lektionen)		2	1	1

Klasse 2 KZG GF Wochenstunden: 2				
Grobziele	Lerninhalte	Querverweise		
EINFÜHRUNG● Begriffswelt und Arbeitsweise der Physik kennenlernen	Physikalische Grössen, Masseinheiten, Grössenordnungen; die Rolle von Experiment und Theorie, das Wesen des Modells	Mathematik: Darstellung grosser und kleiner Zahlen		
GEOMETRISCHE OPTIK				
Kennenlernen der physikali- schen Methoden beim Expe- rimentieren	Ausbreitung des Lichts, Reflexion, Totalreflexion, Brechung	Mathematik: Strahlensätze, Trigonometrie		
Analogien in der Natur und Technik entdecken	Optische Instrumente, Auge	Biologie: Das Auge		
MECHANIK				
 Bewegung des Massen- punkts verstehen, graphisch darstellen und interpretieren können 	Ort, Geschwindigkeit und Beschleunigung in Abhängigkeit von der Zeit (Kinematik), Fallbewegung, Zusammengesetzte Bewegungen	Mathematik: Gleichung von Gerade und Parabel zweiten Grades Sport Wurf		
Ursache von Bewegung ver- stehen	Masse (Trägheit), Dichte Gewichtskraft (Schwere), Feder- und Reibungskraft O Drehmoment O Gleichgewicht am Hebel	Mathematik: Vektoren Sport: Trainingsgeräte Technik: Luftwiderstand, Bremsweg		
Gesetzmässigkeit der Natur erkennen und anwenden	Newtons Grundgesetze der Mechanik (Dynamik)	Geschichte, Philosophie: Deter minismus		
 In der einfachsten krummli- nigen Bewegung die Grund- gesetze der Mechanik an- wenden 	Gleichförmige Kreisbewegung Zentripetalbeschleunigung	Technik: Kurvenfahrt		
 Energie-Erhaltungssatz der Mechanik kennen und anwenden, ökologische As- pekte verstehen 	Mechanische Energieformen Energiesatz	Technik: Energiegewinnung, -übertragung und -"verbrauch" Politik, Chemie, Biologie: Energieproblematik		

Fächerübergreifender Unterricht

Grobziele	Lerninhalte	Unterrichtsform / Zeitgefäss
Zusammenhängen in der Umwelt Bewusstsein über Auswirkungen menschlichen Handelns auf die Umwelt entwickeln	Erneuerbare und nicht erneuerbare Energieformen Abfallproblematik Auswirkungen auf die Atmosphäre Konsumverhalten und Auswirkungen	Ökologie Beteiligte Fächer: PS, BI, CH, WR, GS, GG, IN, EN

Klasse 3 KZG GF Wochenstunden: 1				
Grobziele	Lerninhalte	Querverweise		
WÄRMELEHRE / MECHANIK VON FLÜSSIGKEITEN UND GASEN				
Wärme als Energieform er- kennen, Stellenwert	Temperatur, Wärme			
 Gründe für das Sinken, Schweben, Auftauchen, Schwimmen kennen 	Druck, Schweredruck, Auftrieb, Windsysteme	Geografie: Aufbau der Atmosphäre		
Besonderheiten von Gasen kennenlernen	Gesetze des idealen Gases			
Sensibilisierung im Umgang mit Energiereserven	1. und 2. Hauptsatz Thermischer Wirkungsgrad, Verbrennungsmotoren, Wärmepumpe	Ökologie		
 Erkennen der zentralen Stellung der Wärmeerzeugung innerhalb der Energiewirtschaft 	Kalorik	Chemie		
KREISBEWEGUNG, GRAVITATION, ASTRONOMIE				
Kontakt mit verschiedenen Bezugssystemen	O Zentripetal-, Zentrifugalkraft			
Bewegungen im Sonnensystem erkennen und verstehen	Himmelsmechanik (Kepler- Gesetze), Gravitation, Astronomie	Geschichte, Religion: Weltbilder Geografie: Sonnensystem		
ELEKTRIZITÄTSLEHRE I				
Einfachen Elektrischen Stromkreis durchschauen. Kennen aller Begriffe (auch im Umgang mit el. Geräten)	O Elektrische Ladung, Stromstärke, Spannung, Widerstand, Leistung und Arbeit des el. Gleichstroms, Serieund Parallelschaltung ohmscher "Verbraucher"	Hauswirtschaft Haushaltsphysik		

Klasse 4 KZG GF Wochenstunden: 1				
Grobziele	Lerninhalte	Querverweise		
ELEKTRIZITÄTSLEHRE II				
Der Feldbegriff	Elektrostatik: Coulombsches Gesetz, el. Feldstärke, O el. Potenzial, Plattenkondensator Permanentmagnetismus: Ge- setzmässigkeiten, Erde als Magnet	Mathematik: Vektoroperationen, Vektorfunktionen Geografie Feld der Erde, Blitz		
Erkennen der Zusammen- hänge zwischen Magnetis- mus und Elektrizität	Magnetfeld um einen strom- durchflossenen Leiter, Fluss- dichte, Lorentzkraft, Induktions- gesetz, O lenzsche Regel	Technik Motor, Generator		
SCHWINGUNGEN UND WELLEN				
Mechanische Schwingungen untersuchen und beschrei- ben	Freie harmonische (un-) gedämpfte Schwingungen, erzwungene harmonische Schwingungen, Resonanz	Mathematik: Trigonometrische Funktionen, Differenzialrechnung		
Beschreibung von mechani- sche Wellen und Erkennen von speziellen Welleneigen- schaften	Fortlaufende Wellen, Superposition (Interferenz, Schwebung), Stehende Wellen, Tonbildung bei Musikinstrumenten, Schallund Lautstärke	Musik		
Licht als (elektromagnetische) Welle	Interferenzphänomene bei Licht, Bestimmung der Lichtwellenlän- ge, Farben			
MODERNE PHYSIK				
Grenzen der klassischen Physik erkennen	O Spezielle Relativitätstheorie Atomphysik	Geschichte Einfluss der neuen Erkenntnisse auf die Menschheit		